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1 Introduction

Thin-film structures are ubiquitous in nature and engineering
[1-3], and their mechanical behaviors have received considerable
attention, owing to the application of these structures in flexible
electronics [4,5], material science [6,7], bioengineering [8,9], and
aerospace engineering [2,10]. Wrinkling in a thin film is energe-
tically favorable due to the negligible stiffness of the film experienc-
ing compressive stresses [11-15]. Wrinkles usually change the
structural geometry and lead to deviations in the corresponding
mechanical behavior. Therefore, in traditional applications, wrin-
kling is regarded as a failure of the film structure and should be sup-
pressed. However, in recent years, wrinkling has been harnessed
for the design of new materials and structures [4,7,16-20]. Many
studies have focused on generating controllable and ordered
wrinkle patterns on free-standing thin films [21-23] or thin films
on a substrate [17,24-26]. Moreover, the dynamic behavior of
wrinkled film-substrate structures has received significant attention.
Rudykh and Boyce [27] reported that wave propagation in highly
deformable layered media can be controlled through elastic
instability-induced wrinkling of interfacial layers. Li et al. [28]
and Zheng et al. [29] investigated the wrinkling and propagation
of elastic waves in a film-substrate bilayer system with surface/
interfacial structures. A few studies have focused on the influence
of wrinkles on the dynamic behavior of free-standing films [30],
although free-standing nonuniform films have been widely used
in engineering [10,31,32]. For example, free-standing nonuniform
films are applied as a thin-film antenna in aerospace engineering,
and the dynamic control of these films is a crucial issue in structural
design.

Microstructures in a film can change the stress distribution as
well as the wrinkle pattern [21-23]. Both the modal deformations
for all the wave modes and bandgaps are compatible with the
mechanical behavior of the lattice [33,34]. In this paper, we focus
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Controllable Propagation of
Bending Waves in Wrinkled Films

Wrinkling is a common phenomenon in natural and engineering film structures. The wrin-
kles influence the geometry and dynamic response of these structures. In this work, we inves-
tigate the wrinkling of a stretched thin film containing engineered microstructures and its
derived functionality on controlling the propagation of bending waves. The underlying
mechanism is revealed and the effect of wrinkles on the bandgap of bending waves is sys-
tematically evaluated via numerical simulations based on the Bloch wave theory. We show
that wrinkles with a customized wavelength can be triggered in the microstructured film due
to the mismatched deformation in the film. The bandgap of the wrinkled film can be finely
tuned via applied stretching, resulting in the controllable propagation of bending waves in
thin films. Our work provides fundamental insights into wave propagation in wrinkled films
and potential applications for dynamic control of the wave propagation in engineering film
structures. [DOI: 10.1115/1.4043073]

on controllable wave propagation in free-standing microstructured
thin films, obtained by introducing periodic strips and masses into
a uniform film. We find that ordered wrinkles with a customized
wavelength can be triggered by applied stretching, resulting in a
switched bandgap of the microstructured film. The underlying
mechanism governing the propagation of bending waves in the
wrinkled film is revealed via numerical simulations based on the
Bloch wave theory. Our work provides fundamental insights into
wave propagation in wrinkled films as well as potential applications
for dynamic control of the wave propagation in film structures.

This article is organized as follows. Section 2 describes a
composite film composed of periodic microstructures designed
with the aim of obtaining an ordered wrinkle pattern. The mecha-
nism of film wrinkling is presented. Section 3 presents the results
obtained from the investigation of band structures comprising the
unwrinkled/wrinkled film with different tensile strains based on
the Bloch wave theory. Section 4 presents the results of transient
wave propagation analysis performed for verification of the pre-
dicted bandgaps. Section 5 details the findings describing the influ-
ence of the structural parameters on the bandgap structures.

2 Wrinkling of the Microstructured Thin Films

We introduce microstructures in a uniform thin film with the
aim of generating an ordered wrinkle pattern. The influence of
this pattern on the bending-wave propagation in the film is investi-
gated. We also reveal the mechanism of wrinkling and determine
the wavelength and amplitude of the wrinkles.

2.1 Design of the Microstructures. We design a microstruc-
tured thin film as shown in Fig. 1. The microstructures consist of
periodic strips and masses, which share the same midsurface with
the thin film. A side view of the film is shown in Fig. 2(a). Strips
with a width of w, are adhered on a uniform thin film, parallel
and perpendicular to the applied stretching with a period of w.
Square masses (side length: w,) are located at the intersections of
the strips. A polyimide thin film (density: 1.25 g/cm’, elastic
modulus: 3 GPa, Poisson’s ratio: 0.3, and thickness #: 0.025 mm)
is assumed. The strip is composed of the same material as the
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Fig.1 (a) Schematic of the microstructured thin film (composed
of 10x5 periodic unit cells) and the corresponding wrinkle
pattern under a uniaxial stretching strain £,. The contour plot
shows the out-of-plane displacement field v caused by wrinkles
at £,=3g;. (b) Periodic unit cell and the distributions of
minimum principal stresses o, before wrinkling (s, =0.9¢.,)
and out-of-plane displacements v after wrinkling (s, =3z,).
The corresponding dimensions of the film are w=20 mm, ws=
6 mm, and t;=4t=0.1 mm.
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Fig.2 (a) Side view and (b)—(d) the wrinkling mechanism of the
microstructured thin film

film, but has a larger thickness #,;. The mass is fabricated from iron
with a density, Poisson’s ratio, thickness, and an elastic modulus of
7.8 g/cm3, 0.3, 2 mm, and 200 GPa, respectively. Here, we consider
the gravity effect by applying gravity field in the direction perpen-
dicular to the plane. It is proved that the thin film is able to withstand
the weight of the masses by calculating maximum principal stress
and minimum principal stress in the film.

2.2 Wrinkling. We first consider the microstructured thin
film shown in Fig. 1(a). The selection of a smallest unit cell
depends on whether the film is wrinkled. The smallest unit cells
of the flat film and the wrinkled film are a square region

(dimensions: wxw) and a rectangular region (dimensions: w X
2 w), respectively, as shown in Fig. 1(b), w =20 mm, w;=6 mm,
and t,=4r=0.1 mm. Numerical eigenvalue buckling and post-
buckling analyses are both performed with the commercial finite
element software ABAQus. The buckling analysis is used to obtain
the buckling modes and minimum eigenvalue. These modes are
introduced as an imperfection into the postbuckling analysis, and
the minimum eigenvalue is the critical buckling strain [35]. The
thicknesses of strip, film, and mass mainly contribute to structural
bending stiffness. Here, the whole film with microstructures is sim-
plified as a 2D heterogeneous film in the finite element method.
The film, strips, and masses are meshed by the shell element
S4R with a linear elastic material model. The thicknesses of
strip, film, and mass are assigned to the corresponding elements
with 0.025 mm, 0.1 mm and 2 mm, respectively. Periodic bound-
ary conditions are applied to each of the four edges. The top and
bottom edges are free in the y-direction. The left and right edges
are constrained in the x-direction by applying stretching corre-
sponding to a maximum strain of 0.483%, i.e., 3e., (e.,=
0.161% denotes the critical buckling strain of the film). In the post-
buckling analysis, when the stretching strain exceeds the critical
value ¢, periodic wrinkles parallel to the stretching direction
occur in the thin film, as shown in Fig. 1(a). The half wavelength
of the wrinkles is equal to the period of the strips, i.e., A/2=w.
Figure 1(b) shows the minimum principal stress field in the unit
cell (before wrinkling), subjected to a stretching strain of 0.145%
(0.9¢.,). We can see that the compressive stresses, which trigger
the wrinkling, are distributed in the strip.

To reveal the mechanism of the formed wrinkles, the stretching
process is divided into two steps [22], as shown in Figs. 2(b)-
2(d). First, we assume that the strip and the membrane are separated
from each other, i.e., both are freely stretched in the x-direction, as
shown in Fig. 2(c). The thickness of the strip is larger than that of
the membrane. Hence, the stretch stress in the strip is smaller
than that in the membrane. For equal Poisson’s ratio values of the
strip and the membrane, the strip shrinks less than the membrane
in the y-direction. Second, the membrane and the strip are combined
(see Fig. 2(d)), and during this process, the strip is compressed and
the membrane is stretched in the direction perpendicular to the
loading. The consequent internal compressive stresses generated
in the strips trigger the buckling of the strips, i.e., the wrinkling
phenomenon of the microstructured film.

2.3 Geometry of the Wrinkles. To customize the wrinkle
pattern, we investigate the effect of microstructure on the wrinkle
geometry. Focusing on the microstructural dimensions, we vary
the width of the strips w;, period of the strips w, and strip thickness
to film thickness ratio z/t from 4 mm to 8 mm, 18 mm to 22 mm,
and 3 to 5, respectively. We perform postbuckling analysis on
these thin films using finite element method (FEM) and determine
the wavelength and amplitude of the wrinkles with increasing
stretching strain. The half wavelength of the wrinkles is always
equal to the period of the strips, i.e., A/2=w. As shown in Fig. 3,
the amplitude increases with increasing stretching strain for all
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Fig.3 Dependence of the wrinkle amplitude on the applied stretching strain associated with different (a) width
of strips ws, (b) period of strips w, and (c) strip thickness to film thickness ratio t,/t
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cases. However, for a given strain level, the wrinkle amplitude of a
film with wider, sparser, or thinner strips is, in general, larger than
that of a film with narrower, denser, or thicker strips. The results
also reveal that the wavelength of the wrinkles can only be
changed by modifying the period of the strips, whereas the ampli-
tude can be dynamically and independently tuned by adjusting
the applied stretching.

3 Bandgap Structures of the Wrinkled Thin Film
at Different Stretching Strains

3.1 Bloch Wave Analysis. We use energy-band theory to
investigate the propagation of bending waves in a thin film
(Fig. 4). The periodic unit cell and the corresponding irreducible
Brillouin zone for the wrinkled films and the flat films are shown
in Figs. 4(f) and 4(g), respectively. Stretching the unit cell under
periodic boundary conditions, the deformation and stresses at
different stretching strains are extracted and then input into a
same model to execute the frequency analysis in ABAQUS. According
to the Bloch wave theory, elastic waves propagating in a periodic
structure can be expressed as

U(R, 1) = DR)e KR~ (1
where ®(R) is a periodic function with the same periodicity as
the structure and U(R, t) is the dynamic displacement, which
is a function of the position coordinates R and the time t. @
and K are the angular frequency and wave vector, respectively.
Therefore,

U(R, +R) = UR) Fn ()
where R,, is a lattice vector.

The dispersion relation of a periodic structure can be solved by
commercial finite element codes with Bloch-type boundary con-
ditions [29,36]. Arraying the wrinkled unit cell into two models,
the displacement U(R) can be described via the complex expression
U(R) =Ug, +iUy,, where the subscripts Re and Im denote the
real and imaginary parts of U(R), respectively. For our proposed

thin film, we define

Uy, = U, cos (kw) — Ul sin (kw)
Up, = Uk, sin (kw) + UL cos (kw)
Uk, = Ub, cos (2kw) — U sin (2kw)
U, = Uk, sin (2kw) + U2 cos (2kw)

where the superscripts 7, /, u, and b denote the right, left, upper,
and lower boundary, respectively. k is the wave number. w and
2w denote the projections of lattice vectors on the x-axis and
y-axis, respectively. To implement Bloch-type boundary conditions
in ABAQUS, we add Eq. (3) to our FEM model through equation
constraints contained in ABAQus. The corresponding circular
frequency, which yields the band structure of the thin film, is deter-
mined via natural frequency analysis of each wave vector associated
with the irreducible Brillouin zone.

3.2 Evolution of the Bandgap Structures. We determine the
dispersion relation of the thin film (see Figs. 4(a)—4(e)) at stretching
strains of Oe.,, 0.5¢.,, le.,, 1.5¢.,, and 3e.,.. The band structures
indicate that a bandgap of bending waves forms prior to wrinkling.
When the stretching strain surpasses ¢.,, the bandgap perpendicular
to the direction of wrinkling is closed, while a directional bandgap
along the wrinkles remains until the strain reaches 3e.. Subse-
quently, the entire bandgap closes and transforms to a passband.

Figure 5 shows the band structures calculated for the unstretched
film with and without localized masses. The five modes occurring at
the representative frequency locations are presented in each config-
uration. Similar mode shapes occur at the corresponding positions
of the two band structures, where the vibration of the mass is not
dominant. When the masses are added to the film, bandgaps
occur. We also investigate the effect of density of the mass on the
bandgap of the unstretched film. The bandgaps widen with increas-
ing density of the masses. However, the formed bandgap is not due
to locally resonant effect. The reason can be explained from three
points of view. First, the local mass is directly attached to the
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Fig.4 Bandgap structures at the stretching strain of (a) Oz, (b) 0.5&,, (€) 12, (d) 1.5&¢,, and (e) 3,. (f) and (g) The unit cell and
corresponding irreducible Brillouin zone of the wrinkled film and the flat film, respectively.
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Fig. 5 Band structures of the unstretched film without mass (a) and with mass (b), and the

corresponding five modes

film without rubber layer between them. Thus, there is no local
resonator in the film, although local mass is introduced. Second,
the mode shape, located at the lower boundary of the bandgap
(mode 7), does not exhibit the characteristic of locally resonant
mode, where the local mass is vibrating while the substrate is at
rest. In addition, the bandgap profile does not satisfy the feature
of a typical local resonance bandgap profile, where the lower
mode flattens at the edge of the irreducible Brillouin zone, while
the first mode above the bandgap has a minimum when the wave
number is equal to 0. The local mass, therefore, changes the
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impedance mismatch between different regions of the films and
alters the bandgaps based on Bragg-scattering mechanisms.

When the structure is stretched, the effective stiffness of the
stretched film increases, making the calculated Eigen frequencies
increase. In Figs. 6(a)-6(d), we extract the modes in the second
and third branches at strain Oe,, 0.05¢,,, 0.1¢.,, and 0.5¢,,, respec-
tively. We find that, under a small extension (e.g., 0.05¢.,), the
mode shape of the second branch at X point (mode y) is different
from mode a at Oe,,, while that of the third branch is the same as
mode f at Og.,.. As shown in Fig. 6(c), the second branch has
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Fig. 6 The modes in the second and third branches at strain (a) Oz,, (b) 0.05=,, (c) 0.1, and

(d) 0.5z,
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become the third branch over strain 0.05¢,,. As the increasing of
stretching strain along x-direction, the third branch (mode #) for
the stretched film rises faster than the second branch (mode ¢), as
shown in Figs. 6(c) and 6(d). Under the stretching, a bandgap
between the second and third modes is triggered.

When the stretching strain is beyond &, in contrast to that of the
flat thin film, a longitudinal vibration mode perpendicular to the
direction of wrinkling is missing from Fig. 7(a). This indicates
that the coupling of longitudinal waves and bending waves results
in bandgap closure along this direction. To understand this
closure, we remove the internal stresses, but maintain a thin-film
deformation level of 1.2¢., and perform frequency analysis on the
film by sweeping the irreducible Brillouin zone. The dispersion
relation in Fig. 7(b) reveals similar coupling features of longitudinal
waves and bending waves. This confirms that the bandgap closure
perpendicular to the direction of wrinkling results mainly from the
bending deformation of wrinkling, rather than the internal stresses,
at a given strain level.

In Fig. 7(c), we plot the frequency of mode € and mode 7 as a
function of increasing &/e., after buckling. The frequency of
mode 6 decreases with increasing stretching strain, whereas the
frequency of mode 7 increases. When the stretching strain reaches
2.6¢.,, the two curves intersect and close the bandgap in the
direction of wrinkling. We calculate the bandgap structure when
the stretching strain is 2.8¢.,, where bandgap closure occurs along
the wrinkles, as shown in Fig. 7(d). We can see that the gap in
Fig. 7(e) remains open if we maintain a thin-film deformation of
2.8¢., and ignore the internal stresses. The results indicate that
the closed bandgap along the wrinkle direction results from the
increasing internal stresses, rather than the deformation of the wrin-
kled film.

4 Propagation of Bending Waves in Microstructured
Thin Films

To demonstrate the feasibility of thin-film tuning the bandgap
through manipulation of the film wrinkle, we investigate the

dynamic response of thin films via FEM simulation of the bending-
wave propagation. In our transient analyses, a small linear perturba-
tion is applied to a heavily deformed film. Two models are consid-
ered here: a supercell with periodic boundary conditions and a finite
film structure with two clamped ends. For the former, as shown in
Fig. 8(a), the supercell is composed of 10x5 unit cells with the
same geometric and material parameters as the unit cell shown in
Fig. 1(b). For the latter, a finite thin film consisting of 60 x5 unit
cells is modeled with two clamped ends, as shown in Fig. 9(a).

4.1 Dynamic Simulations. We investigate the dynamic
response of the thin film by simulating the propagation of bending
waves using ABAQUs. The supercell is meshed by the shell element
S4R with a linear elastic material model. Periodic boundary condi-
tions are applied to each of the edges. The film is stretched by a
maximum strain of 0.483% (3¢.,) in the x-direction. Afterward,
we use the restart analysis in ABAQuS Standard to extract the defor-
mation and stresses of the thin film at stretching strains of 0.5¢,,
1.5¢.,, and 3e¢,,. These are then assigned to the same model (in
ABAQUS Explicit). For the model of the wrinkled film, periodic
boundary conditions are applied to the top and bottom of the film,
and the horizontal displacement is constrained on the left and
right edges. An out-of-plane harmonic excitation with an amplitude
of 0.01 mm at 450 Hz is then exerted at the left edge. The pro-
pagation of bending waves along the direction of the wrinkling is
determined via the transient analysis of the film. Similarly, the
propagation of bending waves perpendicular to this direction is
simulated. Here, periodic boundary conditions are applied to the
left and right edges, and an out-of-plane harmonic excitation with
the aforementioned amplitude and frequency is exerted at the
bottom edge.

We further demonstrate the feasibility of the proposed method
by considering a finite thin film with two clamped ends, rather
than periodic boundary conditions, as shown in Fig. 9(a). At
450 Hz, an out-of-plane excitation with an amplitude of 0.01 mm
is exerted at the center of the film under stretching strains of
0.5¢.,, 1.5¢.,, and 3e,.,.
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Fig. 7 Bandgap structures at the stretching strain of (a) and (b) 1.2z, (d) and (e) 2.8=,. In (b) and (e), internal stresses in
the wrinkled thin film are removed and only the deformation is considered. (c) Frequency dependence of deformation mode

6 and mode 7 on increasing &,/z., after buckling.
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Fig. 8 (a) Supercell consisting of 10 x 5 unit cells with periodic boundary conditions and (b) the corresponding wrinkle pattern at
stretching strain 3z.,. The out-of-plane displacement fields of the thin film under a 450 Hz harmonic excitation with an amplitude of
0.01 mm exerted at the left or bottom edge, when the stretching strain is (c) 0.5z, (d) 1.5z, and (e) 3z,.

Fig. 9 (a) Finite thin film consisting of 60 x 5 unit cells with two
clamped ends and (b) the corresponding wrinkle pattern at
stretching strain 3¢.,. The out-of-plane displacement fields of
the thin film under a 450 Hz harmonic excitation with an ampli-
tude of 0.01 mm exerted at the center, when the stretching
strain is (c) 0.5¢,, (d) 1.5&.,, and (e) 3&¢,-

4.2 Propagation of Bending Waves in Both Directions.
When the stretching strain of the film surpasses the critical buckling
strain, parallel wrinkles form along the stretching direction with a
half wavelength equal to the period of the strips. This result is
obtained for both models (see Figs. 8(b) and 9(b)), except for the
regions close to the clamped ends of the finite thin film. At a stretch-
ing strain of 0.5¢.,, bending waves can not propagate in both direc-
tions (Figs. 8(c) and 9(c)), since the frequency of 450 Hz is located
in the bandgap (Fig. 4(b)). At 1.5¢.,, waves can only propagate in
the direction perpendicular to the wrinkles (Figs. 8(d) and 9(d)),
since the bandgap becomes directional. Waves can propagate in
both directions as the bandgap switches to a passband over 3¢,
(Fig. 4(e)). These results indicate that, by controlling the applied
stretching, we can dynamically switch the opening and closing of
the bandgap. The results from the transient analysis of the finite
thin film correspond closely to the results obtained via the Bloch
wave analysis. Furthermore, the results demonstrate the capability
of our method to dynamically control the propagation of bending
waves in a thin film with a finite size and subjected to realistic
boundary conditions.

061005-6 / Vol. 86, JUNE 2019

5 Parametric Study

To understand the bending-wave propagation in wrinkled films
and guide the design of microstructures in engineering film struc-
tures for controlling the wave propagation, we systematically inves-
tigate the effect of microstructures on the bandgap. During this
parametric study, the period, thickness, and width of the strips
(w, ty/t, and wy, respectively) as well as the density of masses p
are varied. We will show that the wrinkles and bandgap can be tai-
lored by designing the proposed microstructures.

5.1 Period of Strips. We vary the period of the strips w from
17 mm to 23 mm and determine the gap range and lower frequency
at different stretching strains, as shown in Figs. 10(a) and 10(b).
Changes in the gap range of the flat film differ from those of the
wrinkled film. The gap range is almost constant with increasing w
before the film wrinkles, but decreases after wrinkling. When
the curve intersects the x-axis, the gap is closed. Furthermore, the
lower frequency of the gap always decreases with increasing w
(Fig. 10(b)). The dashed line indicates the envelope of lower
frequency, i.e., the frequency just before the bandgap closes
during stretching. We also obtain the threshold of the stretching
strain for closing of the gap against the period of the strips, which
decreases monotonously, as shown in Fig. 10(c). The results
show that, compared with denser films, a thin film with sparser
strips can have a bandgap with a lower frequency, but a smaller
range at a given strain level; the switchable gap can be realized at
a smaller loading level, which is favorable for engineering film
structures. Therefore, the gap range, lower frequency, and threshold
of the stretching strain for the closed gap can be tuned by varying
the period of the strips.

5.2 Thickness of Strips. Subsequently, we vary the strip
thickness to film thickness ratio ¢/t from 2 to 5. The evolution of
the gap range and lower frequency associated with different stretch-
ing strains are shown in Figs. 11(a) and 11(b). The frequency
increases with increasing £/t but changes in the gap range before
and after wrinkling are described by different trends. Before wrin-
kling, the gap range increases rapidly and monotonously with
increasing t/t, but the rate of increase decreases gradually after
wrinkling. The gap range decreases when the strip is relatively
thick. Figure 11(c) indicates that, compared with those character-
ized by smaller differences, the film with a larger difference in
the film and strip thicknesses has a lower threshold strain when
the gap is closed. Furthermore, this strain decreases almost linearly
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stretching strain for a closed gap with different period of the strips
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Fig. 12 (a) Gap range, (b) lower frequency of the bandgap, and (c) normalized threshold of the
stretching strain for the closed gap with different width of strips

with increasing ¢,/t. These results indicate that we can also tune the
bandgap by varying the thickness ratio #,/t.

5.3 Width of Strips. We further study the effect of strip width
wy on the bandgap by varying w, from 4 mm to 8 mm, as shown
in Fig. 12. When wy increases, the gap range of the nonwrinkled
films decreases, whereas the gap range of the wrinkled film
increases. The lower frequency and the threshold of stretching
strain always increase with increasing w; (Figs. 12(a) and 12(b)).
For a given strain level beyond wrinkling, the thin film with
wider strips can experience a higher frequency and control a

wider range of bending waves than films with narrower strips; the
bandgap closes at a relatively higher stretching level.

5.4 Density of Masses. Finally, we investigate the effect of
masses on the propagation of bending waves under stretching.
The density of masses p varied from 2.7 g/em® to 12 g/em®, and
the corresponding changes in the features of the bandgap are
noted (see Fig. 13). As for the unstretched film, the bandgaps
broaden with increasing p (Sec. 3.2), in contrast to the evolution
of the stretching film gap range. As p increases, the bandgaps
decrease before wrinkling, but increase after wrinkling (Fig. 13(a)).
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Fig. 13 (a) Gap range, (b) lower frequency of the bandgap, and (c) normalized threshold of the
stretching strain for the closed gap with different density of masses
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The evolution of the gap range associated with the lower frequency
evolves in the opposite manner, i.e., the frequency decreases with
increasing p (Fig. 13(b)). Moreover, the threshold of the stretching
strain increases significantly with increasing p (Fig. 13(c)).

6 Conclusion

In this work, we study the propagation of bending waves in wrin-
kled thin films and propose dynamic control of the wave propa-
gation in the film structure via manipulation of the film wrinkle.
We design a microstructured thin film with periodic strips and
masses to achieve the customized wrinkle pattern. The mismatched
deformation between the film and the strips in each unit cell results
in the formation of wrinkles. The half wavelength of these wrinkles
is equal to the period of the strips, whereas the amplitude depends
on the applied stretching. Owing to the coupling of bending waves
and longitudinal waves, adjustment of the applied stretching that
triggers the wrinkling leads to closure of the bandgap in the direc-
tion perpendicular to the wrinkles. However, the bandgap in the
direction parallel to the wrinkles can be closed with increasing
stresses. We can control the propagation of bending waves in a
wrinkled thin film via the applied stretching and precisely adjust
the frequency range and lower frequency of the bandgap through
microstructural design. An understanding of bending-wave pro-
pagation in wrinkled thin films can guide us in microstructural
design aimed at controlling the wave propagation. Most of the
films used in engineering applications are nonuniform. For
example, in aerospace film antenna, electrical components are
adhered on the film in order to achieve specific functionalities.
These components can be further designed and used as microstruc-
tures for generating desired wrinkle patterns. Our investigation also
provides an avenue for using the intrinsic wrinkles in a structure to
suppress the propagation of vibrations. The simple wave control
strategy of the proposed method has potential applications in prac-
tical engineering film structures.
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